Time-dependent prediction and evaluation of variable importance using superlearning in high-dimensional clinical data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection and Prediction with Incomplete High-dimensional Data.

We propose a Multiple Imputation Random Lasso (mirl) method to select important variables and to predict the outcome for an epidemiological study of Eating and Activity in Teens. In this study 80% of individuals have at least one variable missing. Therefore, using variable selection methods developed for complete data after listwise deletion substantially reduces prediction power. Recent work o...

متن کامل

hazard evaluation of gas condensate stabilization and dehydration unit of parsian gas refinery using hazop procedures

شناسایی مخاطرات در واحد 400 پالایشگاه گاز پارسیان. در این پروزه با بکارگیری از تکنیک hazop به شناسا یی مخاطرات ، انحرافات ممکن و در صورت لزوم ارایه راهکارهای مناسب جهت افزایش ایمنی فرا یند پرداخته میگردد. شرایط عملیاتی مخاطره آمیز نظیر فشار و دمای بالا و وجود ترکیبات مختلف سمی و قابل انفجار در واحدهای پالایش گاز، ضرورت توجه به موارد ایمنی در این چنین واحدهایی را مشخص می سازد. مطالعه hazop یک ر...

Prediction and evaluation of runoff data in south of Qazvin watershed, using a fuzzy logic technique

The important criteria for designing in the most of hydrologic and hydraulic construction projects are based on runoff or peak-flow of water. Mostly, this measure and criterion is calculated or estimated by stochastic data. Another feature of these data that are used in watershed hydrological studies is their impreciseness. Therefore, in this study, in order to deal with uncertainty and impreci...

متن کامل

Variable Selection and Parameter Tuning in High-Dimensional Prediction

In the context of classification using high-dimensional data such as microarray gene expression data, it is often useful to perform preliminary variable selection. For example, the k-nearest-neighbors classification procedure yields a much higher accuracy when applied on variables with high discriminatory power. Typical (univariate) variable selection methods for binary classification are, e.g....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Trauma and Acute Care Surgery

سال: 2013

ISSN: 2163-0755

DOI: 10.1097/ta.0b013e3182914553